9 research outputs found

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    Radiative Transfer Simulations of AGN Dust Tori

    No full text
    The presence of dust tori in active galactic nuclei (AGN) lies at the heart of AGN unification schemes. The dominating inner part of the tori can only be resolved by infrared interferometry. Here we discuss the present state of torus models and the radiative transfer methods to simulate the infrared SEDs and visibilities for comparison with actual observations. We highlight the differences between smooth and clumpy tori and present a model for the Seyfert 2 nucleus NGC 1068

    Mid-infrared properties of nearby low-luminosity AGN at high angular resolution.

    No full text
    High spatial resolution mid-infrared (MIR) 12 \mum continuum imaging of low-luminosity active galactic nuclei (LLAGN) obtained by VLT/VISIR is presented. The goal of this investigation is to determine if the nuclear MIR emission of LLAGN is consistent with the existence of a dusty obscuring torus. A sample of 17 nearby LLAGN was selected and combined with archival VISIR data of 9 additional LLAGN with available X-ray measurements. Of the 17 observed LLAGN, 7 are detected, while upper limits are derived for the 10 non-detections. All detections except NGC 3125 appear point-like on a spatial scale of \sim 0.35". The detections do not significantly deviate from the known MIR-X-ray correlation but extend it by a factor of \sim 10 down to luminosities < 10^41 erg/s with a narrow scatter. The latter is dominated by the uncertainties in the X-ray luminosity. Interestingly, a similar correlation with comparable slope but with a normalization differing by \sim 2.6 orders of magnitude has been found for local starburst galaxies. In addition, the VISIR data are compared with lower spatial resolution data from Spitzer/IRS and IRAS. By using a scaled starburst template SED and the PAH 11.3 \mum emission line the maximum nuclear star formation contamination to the VISIR photometry is restricted to < 30% for 75% of the LLAGN. Exceptions are NGC 1097 and NGC 1566, which may possess unresolved strong PAH emission. Furthermore, within the uncertainties the MIR-X-ray luminosity ratio is unchanged over more than 4 orders of magnitude in accretion rate. These results are consistent with the existence of the dusty torus in all observed LLAGN, although the jet or accretion disk as origin of the MIR emission cannot be excluded. Finally, the fact that the MIR-X-ray correlation holds for all LLAGN and Seyferts makes it a very useful empirical tool for converting between the MIR and X-ray powers of these nuclei.Comment: 19 pages, 7 figures, accepted for publication in A&

    Local AGN Survey (LASr): I. Galaxy sample, infrared colour selection and predictions for AGN within 100 Mpc

    Get PDF
    To answer major questions on supermassive black hole (SMBH) and galaxy evolution, a complete census of SMBH growth, i.e., active galactic nuclei (AGN), is required. Thanks to all-sky surveys by the Wide-field Infrared Survey Explorer (WISE) and the Spectrum-Roentgen-Gamma (SRG) missions, this task is now feasible in the nearby Universe. We present a new survey, the Local AGN Survey (LASr), with the goal of identifying AGN unbiased against obscuration and determining the intrinsic Compton-thick (CT) fraction. We construct the most complete all-sky galaxy sample within 100 Mpc (90% completeness for log (M*/M⊙) ∼ 9.4), four times deeper than the current reference, the Two Micron All-Sky Survey Redshift Survey (2MRS), which misses ∼20% of known luminous AGN. These 49k galaxies serve as parent sample for LASr, called LASr-GPS. It contains 4.3k already known AGN, ≥82% of these are estimated to have Lnuc(12μm) < 1042.3 erg s−1, i.e., are low-luminosity AGN. As a first method for identifying Seyfert-like AGN, we use WISE-based infrared colours, finding 221 galaxies at Lnuc(12μm) ≥ 1042.3 erg s−1 to host an AGN at 90% reliability. This includes 61 new AGN candidates and implies and optical type 2 fraction of 50–71%. We quantify the efficiency of this technique and estimate the total number of AGN with Lint(2-10  keV) ≥ 1042 erg s−1 in the volume to be 362+145−116 (⁠8.6+3.5−2.8× 10−5 Mpc−3). X-ray brightness estimates indicate the CT fraction to be 40–55% to explain the Swift non-detections of the infrared selected objects. One third of the AGN within 100 Mpc remain to be identified, and we discuss the prospects for the eROSITA all-sky survey to detect them

    IC 3639 - A new bona fide Compton-thick AGN unveiled by NuSTAR

    Get PDF
    We analyze high-quality NuSTAR observations of the local (z = 0.011) Seyfert 2 active galactic nucleus (AGN) IC 3639, in conjunction with archival Suzaku and Chandra data. This provides the first broadband X-ray spectral analysis of the source, spanning nearly two decades in energy (0.5–30 keV). Previous X-ray observations of the source below 10 keV indicated strong reflection/obscuration on the basis of a pronounced iron fluorescence line at 6.4 keV. The hard X-ray energy coverage of NuSTAR, together with self-consistent toroidal reprocessing models, enables direct broadband constraints on the obscuring column density of the source. We find the source to be heavily Compton-thick (CTK) with an obscuring column in excess of 3.6 10 ´ 24 cm−2 , unconstrained at the upper end. We further find an intrinsic 2–10 keV luminosity of - = - + log erg s 43.4 L 10 2 10 keV 1 1.1 0.6 ( [ ]) – to 90% confidence, almost 400 times the observed flux, and consistent with various multiwavelength diagnostics. Such a high ratio of intrinsic to observed flux, in addition to an Fe-Kα fluorescence line equivalent width exceeding 2 keV, is extreme among known bona fide CTK AGNs, which we suggest are both due to the high level of obscuration present around IC 3639. Our study demonstrates that broadband spectroscopic modeling with NuSTAR enables large corrections for obscuration to be carried out robustly and emphasizes the need for improved modeling of AGN tori showing intense iron fluorescence

    Cold molecular gas and PAH emission in the nuclear and circumnuclear regions of Seyfert galaxies

    Get PDF
    We investigate the relation between the detection of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the nuclear (∼24−230 pc) regions of 22 nearby Seyfert galaxies and the properties of the cold molecular gas. For the former we use ground-based (0.3−0.6″ resolution) mid-infrared (mid-IR) spectroscopy. The cold molecular gas is traced by ALMA and NOEMA high (0.2−1.1″) angular resolution observations of the CO(2–1) transition. Galaxies with a nuclear detection of the 11.3 μm PAH feature contain more cold molecular gas (median 1.6 × 107 M⊙) and have higher column densities (N(H2) = 2 × 1023 cm−2) over the regions sampled by the mid-IR slits than those without a detection. This suggests that molecular gas plays a role in shielding the PAH molecules in the harsh environments of Seyfert nuclei. Choosing the PAH molecule naphthalene as an illustration, we compute its half-life in the nuclear regions of our sample when exposed to 2.5 keV hard X-ray photons. We estimate shorter half-lives for naphthalene in nuclei without a 11.3 μm PAH detection than in those with a detection. The Spitzer/IRS PAH ratios on circumnuclear scales (∼4″ ∼ 0.25−1.3 kpc) are in between model predictions for neutral and partly ionized PAHs. However, Seyfert galaxies in our sample with the highest nuclear H2 column densities are not generally closer to the neutral PAH tracks. This is because in the majority of our sample galaxies, the CO(2–1) emission in the inner ∼4″ is not centrally peaked and in some galaxies traces circumnuclear sites of strong star formation activity. Spatially resolved observations with the MIRI medium-resolution spectrograph on the James Webb Space Telescope will be able to distinguish the effects of an active galactic nucleus (AGN) and star formation on the PAH emission in nearby AGN

    Nuclear molecular outflow in the Seyfert galaxy NGC 3227

    Get PDF
    ALMA observations have revealed nuclear dusty molecular disks or tori with characteristic sizes 15−40 pc in the few Seyferts and low -luminosity AGN that have been studied so far. These structures are generally decoupled both morphologically and kinematically from the host galaxy disk. We present ALMA observations of the CO(2–1) and CO(3–2) molecular gas transitions and associated (sub-) millimeter continua of the nearby Seyfert 1.5 galaxy NGC 3227 with angular resolutions 0.085 − 0.21″ (7–15 pc). On large scales, the cold molecular gas shows circular motions as well as streaming motions on scales of a few hundred parsecs that are associated with a large-scale bar. We fit the nuclear ALMA 1.3 mm emission with an unresolved component and an extended component. The 850 μm emission shows at least two extended components, one along the major axis of the nuclear disk, and the other along the axis of the ionization cone. The molecular gas in the central region (1″ ∼ 73 pc) shows several CO clumps with complex kinematics that appears to be dominated by noncircular motions. While we cannot conclusively demonstrate the presence of a warped nuclear disk, we also detected noncircular motions along the kinematic minor axis. They reach line-of-sight velocities of v − vsys = 150 − 200 km s−1. Assuming that the radial motions are in the plane of the galaxy, we interpret them as a nuclear molecular outflow due to molecular gas in the host galaxy that is entrained by the AGN wind. We derive molecular outflow rates of 5 M⊙ yr−1 and 0.6 M⊙ yr−1 at projected distances of up to 30 pc to the northeast and southwest of the AGN, respectively. At the AGN location we estimate a mass in molecular gas of 5 × 105 M⊙ and an equivalent average column density N(H2) = 2 − 3 × 1023 cm−2 in the inner 15 pc. The nuclear CO(2–1) and CO(3–2) molecular gas and submillimeter continuum emission of NGC 3227 do not resemble the classical compact torus. Rather, these emissions extend for several tens of parsecs and appear connected with the circumnuclear ring in the host galaxy disk, as found in other local AGN

    Using the motion of S2 to constrain scalar clouds around SgrA

    No full text
    International audienceThe motion of S2, one of the stars closest to the Galactic Centre, has been measured accurately and used to study the compact object at the centre of the Milky Way. It is commonly accepted that this object is a supermassive black hole but the nature of its environment is open to discussion. Here, we investigate the possibility that dark matter in the form of an ultralight scalar field ``cloud'' clusters around Sgr~A*. We use the available data for S2 to perform a Markov Chain Monte Carlo analysis and find the best-fit estimates for a scalar cloud structure. Our results show no substantial evidence for such structures. When the cloud size is of the order of the size of the orbit of S2, we are able to constrain its mass to be smaller than 0.1%0.1\% of the central mass, setting a strong bound on the presence of new fields in the galactic centre
    corecore